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Abstract. Representations of the Abelian-projected SU(2) and SU(3) gluodynamics in terms of the mag-
netic monopole currents are derived. Besides the quadratic part, the obtained effective actions contain
interactions of these currents with the world-sheets of electric strings in four dimensions (4D) or electric
vortex lines in three dimensions (3D). Next, we illustrate that 3D compact QED is a small gauge-boson
mass limit of a 3D Abelian Higgs model with external monopoles and give a physical interpretation of
the confining string theory as the integral over the monopole densities. Finally, we derive the bilocal field-
strength correlator in the weak-field limit of 3D compact QED, which turns out to be in line with the one
predicted by the stochastic vacuum model.

1 Introduction

During the last several years, there has appeared a vast
amount of papers devoted to the description of confine-
ment in Abelian-projected theories [1] (see, e.g., [2–14]
and references therein). The main goal of most of these
papers is a derivation of the so-called string representa-
tion of such theories, i.e., a reformulation of their partition
functions in terms of the integral over the world-sheets of
the Abrikosov–Nielsen–Olesen (ANO) strings [15] with a
certain nonlocal action (i.e., one that depends on a rel-
ative distance between two points in the target space).
Such a representation then enables one to get the cou-
pling constants of the corresponding string theory, includ-
ing higher-order derivative terms, and to evaluate correla-
tors of the dual field-strength tensors [12,13], which play
a major role in the so-called stochastic vacuum model
(SVM) [16,17]. In the case where there are no external
quarks in the underlying non-Abelian theory, the corre-
sponding Abelian-projected theory is some kind of a dual
Abelian Higgs model with magnetic Higgs fields, which
describe the condensates of monopole Cooper pairs. This
model possesses classical solutions, which in four dimen-
sions (4D) are just the electric ANO strings; in three di-
mensions (3D), they are simply closed electric vortex lines
[8]. It is therefore intuitively clear that there should exist
some interaction between magnetic monopoles and ANO
strings (vortex lines).

It is the first aim of the present paper to demonstrate
that such an interaction really exists. To this end, we find
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it useful to derive the representations of SU(2) and SU(3)
Abelian-projected theories directly in terms of monopole
currents, which can be done by virtue of the so-called
path-integral duality transformation [7,8]. Then it turns
out that the resulting effective actions for monopole cur-
rents contain, besides the above-mentioned interaction
term, also the free part quadratic in the currents. In the so-
obtained monopole effective action, all the interactions in
the ensemble of monopoles emerging after the Abelian pro-
jection are thus emphasized. Namely, the above-mentioned
quadratic part gives rise to the Biot–Savart interaction be-
tween monopoles as well as to their gauged kinetic energy,
whereas the topological interaction term of monopoles
with strings or vortices is of the Gauss linking number
type, thus reflecting a nontrivial linking between these ob-
jects.

Another theory, known for an even longer time, and
which allows for an analytic description of confinement,
is 3D compact QED [8,18]. In this model, confinement
occurs due to Debye screening in the monopole gas. The
problem of string representation in this model has been
addressed in [4,5], where it has been argued that the
desired string theory is formulated in terms of a mas-
sive antisymmetric tensor field [19] interacting with the
string world-sheet. Such a tensor field is an integer-valued
gauge field, whose sources are monopoles. In a phase where
monopoles are prolific, the integer-valued nature of this
field can be forgotten, and it can be approximated by a
continuous-valued field. The latter one is often referred to
as the Kalb–Ramond field [19]. The complete form of the
action of this field has turned out to be quite a nonlin-
ear one; this was found recently in [20]. After that, the
resulting theory, which is usually referred to as the con-
fining string theory, has undergone intensive developments
[21]. Notice that the weak-field effective action of this the-
ory appears to have the linear form of the massive Kalb–
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Ramond field action, coinciding with the one of the dual
version of the Abelian Higgs model (AHM) in the London
limit. This reflects the fact that there should exist a cor-
respondence between the compact QED and AHM direct
formulations as well.

The second aim of the present paper is to illustrate
the above to be the case, namely that 3D compact QED
is nothing more than the small gauge-boson mass limit of
3D AHM with external monopoles. In addition, we shall
revisit the compact QED and confining string theories.
Specifically, we shall demonstrate that the latter is simply
the integral over the monopole densities. This observa-
tion gives a physical interpretation to the Kalb–Ramond
field as a sum of the monopole and photon field-strength
tensors. Finally, we evaluate field correlators in the weak-
field limit of 3D compact QED. We argue that their large-
distance asymptotic behaviours are in line with the ones
following from the general concepts of SVM and observed
in the lattice experiments [22]. This result gives a field-
theoretical status to SVM and yields a new viewpoint on
the confinement phenomenon in compact QED.

The organization of the paper is as follows. In the next
section, we study the topic of representation of Abelian-
projected theories in terms of magnetic monopole cur-
rents. In Sect. 3, we revisit 3D compact QED and its string
representation, after which it is demonstrated how this
theory can be obtained by a limiting procedure from 3D
AHM with monopoles. In the appendix, we outline some
details of the path-integral duality transformation.

2 Representation of the Abelian-projected
theories in terms of monopole currents

Let us start with the 4D SU(2) Abelian-projected gluody-
namics, which is argued to be just the dual Abelian Higgs
model (DAHM), whose partition function in the London
limit has the form

Z4D DAHM =
∫

DBµDθ̄Dθ exp
{

−
∫

d4x

[
1
4
F 2

µν

+
η2

2
(
∂µ

(
θ + θ̄

)− 2gBµ

)2]}
. (1)

Here, Fµν = ∂µBν − ∂νBµ is a field-strength tensor of the
dual vector potential Bµ, and g is a magnetic coupling con-
stant (2g is the magnetic charge of the monopole Cooper
pair). Next, η denotes the v.e.v. of the magnetic Higgs
field, whose phase has been written as a sum over a mul-
tivalued part θ̄ and a single-valued fluctuation θ around
it. The multivalued field θ̄ describes all possible electric
string configurations1. In what follows, we shall restrict
ourselves to studying a given one of them. There exists
a one-to-one correspondence between the field θ̄ and the
world-sheet coordinate of the ANO string (see (2) below).
Note that in this respect, such a correspondence enables
us to understand the symbol of the integration measure

1 In [8], the gradient of this field has been called the vortex
gauge field θv

µ.

Dθ̄ as a formal prescription for an integral over string
world-sheets (cf. notations in [7,9,12,13])2.

The above-mentioned correspondence between the
multivalued field θ̄ and the (closed) world-sheet Σ of the
electric ANO string has the form

εµνλρ∂λ∂ρθ̄(x) = 2πΣµν(x) ≡ 2π

∫
Σ

dσµν(x(ξ))δ(x−x(ξ)),

(2)
where Σµν is usually referred to as a vorticity tensor cur-
rent [7], and ξ =

(
ξ1, ξ2

)
stands for the two-dimensional

coordinate. Notice that (2) is nothing more than the co-
variantized version of the Stokes theorem for the vector
field ∂µθ̄. It is also worth noting that the model (1) is
actually a continuum version of the corresponding lattice
model [8]. In the latter case, ∂µθ̄ is an integer-valued field
as well as the Kalb–Ramond field hµν (see (3) below).
Only in the phase where monopoles become prolific can
these fields be replaced by the continuous-valued ones, af-
ter which we arrive at the model (1).

Performing now the path-integral duality transforma-
tion [5,7,8,12], we obtain the following representation for
the partition function (1) (see Appendix A):

Z4D DAHM =
∫

DAµDxµ(ξ)Dhµν

× exp

{
−
∫

d4x

[
1

12η2 H2
µνλ − iπhµνΣµν

+ (ghµν + ∂µAν − ∂νAµ)2
]}

. (3)

In (3), Aµ is the usual gauge field dual to the vector po-
tential Bµ, and Hµνλ ≡ ∂µhνλ +∂λhµν +∂νhλµ is the field
strength tensor of a massive antisymmetric tensor field
hµν (the so-called Kalb–Ramond field [19]). This antisym-
metric spin-1 tensor field describes a massive dual vector
boson. Thus, the path-integral duality transformation is
just a way of getting a coupling of this boson to a string
world-sheet, rather than to a world-line (as takes place in
the usual case of the Wilson loop). In particular, carrying
out in (3) the Gaussian integration over the Kalb–Ramond
field, one gets a representation of the partition function in
terms of an interaction of the elements of the world-sheet
Σ, mediated by the propagator of this field [12]. In what
follows, we shall derive another useful representation for
the partition function, expressing it directly in terms of
magnetic monopole currents.

Notice that according to the equation of motion for the
field Aµ, the absence of external electric currents is ex-
pressed by the equation ∂µFµν = 0, where Fµν ≡ ∂µAν −
∂νAµ + ghµν . Regarding Fµν as a full electromagnetic
field-strength tensor, one can write for it the correspond-
ing Bianchi identity modified by the monopoles, ∂µF̃µν =
g∂µh̃µν . This identity means that the monopole current

2 Clearly, the path-integral measure over multivalued fields
in the usual sense of discretized space-time is not defined.
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can be written in terms of the Kalb–Ramond field hµν as

jµ = g∂ν h̃νµ, (4)

which manifests its conservation.
It is also instructive to write down the equation of

motion for the Kalb–Ramond field in terms of the in-
troduced full electromagnetic field-strength tensor. This
equation has the form Fνλ = (g/m2)∂µHµνλ+(iπ/2g)Σνλ,
where m = 2gη stands for the mass of the dual gauge bo-
son (equal to the mass of the Kalb–Ramond field). By
virtue of conservation of the vorticity tensor current for
the closed string world-sheets, ∂µΣµν = 0, this equation
again yields the condition of absence of external electric
currents, ∂µFµν = 0.

Let us now turn to a derivation of the monopole cur-
rent representation for the partition function of the
DAHM. To this end, we shall first solve the equation
(g/2)εµνλρ∂νhλρ = −jµ w.r.t. hµν :

hµν(x) = − 1
2π2g

εµνλρ

∫
d4y

(x − y)λ

|x − y|4 jρ(y).

Next, we get the following expressions for various terms
on the right-hand side (R.H.S.) of (3)

H2
µνλ =

6
g2 j2

µ,∫
d4xh2

µν =
1

2π2g2

∫
d4xd4yjµ(x)

1
(x − y)2

jµ(y).

Bringing all this together and performing in (3) the so-
called monopole gauge transformation [5] hµν → hµν +
∂µΛν − ∂νΛµ, with the gauge function Λµ = −(1/g)Aµ,
which eliminates the field Aµ, we finally arrive at the de-
sired monopole current representation, which has the form

Z4D DAHM =
∫

Dxµ(ξ)Dhµν

× exp

{
− 1

2π2

∫
d4xd4yjµ(x)

1
(x − y)2

jµ(y)

− 2
m2

∫
d4xj2

µ +
2πi
g

Sint.(Σ, jµ)

}
. (5)

The first term in the exponent on the R.H.S. of (5) has
the form of the Biot–Savart energy of the electric field
generated by monopole currents [8], the second term cor-
responds to the (gauged) kinetic energy of Cooper pairs,
and the term

Sint.(Σ, jµ) =
1

4π2 εµνλρ

∫
d4xd4yjµ(x)

(y − x)ν

|y − x|4 Σλρ(y)

(6)
describes the interaction of the string world-sheet with
the monopole current jµ. This interaction can obviously
be rewritten in the form Sint. =

∫
d4xjµHstr.

µ , where Hstr.
µ

is the four-dimensional analog of the magnetic induction,
produced by the electric string according to the equation

εµνλρ∂λHstr.
ρ = Σµν . (7)

Notice that if one includes an additional current describing
an external monopole,

jext.
µ (x) = g

∮
Γ

dxµ(τ)δ(x − x(τ)), (8)

there arises, among other things, an interaction term (6),
which in this case takes the form Sint. = gL̂(Σ, Γ ), where
L̂(Σ, Γ ) is simply the Gauss linking number of the world-
sheet Σ with the contour3 Γ .

Clearly, the functional integral over the Kalb–Ramond
field in (5) has to be evaluated at the saddle point

hs.p.
µν (x) =

igη3

π

∫
Σ

dσµν(x(ξ))
K1(m|x − x(ξ)|)

|x − x(ξ)| ,

where from here on, Kn, n = 0, 1, 2, · · · stands for the
modified Bessel function. By virtue of (4), the monopole
current can then be expressed via the string world-sheet
Σ as follows:

jµ(x) =
im2η

8π
εµνλρ

∫
Σ

dσλρ(x(ξ))
(x − x(ξ))ν

(x − x(ξ))2

×
{

K1(m|x − x(ξ)|)
|x − x(ξ)|

+
m

2

[
K0(m|x − x(ξ)|) + K2(m|x − x(ξ)|)

]}
.

It is straightforward to extend the above analysis to
the case of the effective dual theory of Abelian-projected
SU(3) gluodynamics [2], which is nothing more than
DAHM with the [U(1)]2 gauge invariance. In that case,
the partition function (1) is replaced by

ZSU(3) =
∫

DBµDθ̄aDθaδ

(
3∑

a=1

(
θa + θ̄a

))×

exp

{
−
∫

d4x

[
1
4
F2

µν+
η2

2

3∑
a=1

(
∂µ

(
θa + θ̄a

)− gεaBµ

)2]}

(9)
where Fµν = ∂µBν − ∂νBµ stands for the field-strength
tensor of the Abelian vector potential Bµ ≡ (

B3
µ, B8

µ

)
,

dual to the usual vector potential Aµ ≡ (
A3

µ, A8
µ

)
. Next,

on the R.H.S. of (9),

ε1 = (1, 0) , ε2 =

(
−1

2
,−

√
3

2

)
, ε3 =

(
−1

2
,

√
3

2

)

3 Topological interactions of this kind are sometimes inter-
preted as 4D analogs of the Aharonov–Bohm effect. In partic-
ular, this interaction, albeit for the current of an external elec-
trically charged particle with the string world-sheet, emerges
in the string representation for the Wilson loop of this particle
in AHM [9].
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denote the so-called root vectors, and the constraint
3∑

a=1

(
θa + θ̄a

)
= 0 is due to the fact that the unitary group

under study is special. The multivalued fields θ̄a are re-
lated to the world-sheets of the three types of strings as

εµνλρ∂λ∂ρθ̄a(x) = 2πΣa
µν(x) (10)

≡ 2π

∫
Σa

dσµν(xa(ξ))δ(x − xa(ξ)),

where xa ≡ xa
µ(ξ) is a four-vector parametrizing the world-

sheet Σa.
Performing the path-integral duality transformation of

(9) by making use of (10), we obtain (see [13] for the de-
tails)

ZSU(3) =
∫

Dxa
µ(ξ)δ

(
3∑

a=1

Σa
µν

)
DAa

µDha
µν

× exp


−

∫
d4x


 1

12η2

(
Ha

µνλ

)2 − iπha
µνΣa

µν

+

(
g

√
3

2
√

2
ha

µν + ∂µAa
ν − ∂νAa

µ

)2



 , (11)

where Aa
µ ≡ εaAµ. (11) means that the three monopole

currents can be expressed in terms of three Kalb–Ramond
fields as ja

µ = g(
√

3/2
√

2)∂ν h̃a
νµ (cf. (4)). Finally, rewrit-

ing (11) via these currents and resolving the constraint
3∑

a=1
Σa

µν = 0 by integrating over one of the world-sheets

(for concreteness, x3
µ(ξ)), we obtain

ZSU(3) =
∫

Dx1
µ(ξ)Dx2

µ(ξ)Dha
µν

× exp

{
− 1

2π2

∫
d4xd4yja

µ(x)
1

(x − y)2
ja
µ(y)

− 2
m2

B

∫
d4x

(
ja
µ

)2
+4πi

√
2
3

1
g

[
Sint.

(
Σ1, j1

µ

)
+ Sint.

(
Σ2, j2

µ

)

−Sint.
(
Σ1, j3

µ

)− Sint.
(
Σ2, j3

µ

)]}
, (12)

where mB =
√

3/2gη stands for the masses of the fields
B3

µ and B8
µ, which they acquire due to the Higgs mecha-

nism. Equation (12) is the desired representation for the
partition function of the Abelian-projected SU(3) gluody-
namics in terms of three monopole currents, which should
be evaluated at the saddle point. The terms in square
brackets on its R.H.S. yield an interference between vari-
ous possibilities of the interaction between the string
world-sheets and monopole currents in this model.

For illustration, let us establish a correspondence of
the above results to the 3D ones. Namely, let us derive a
3D analog of (5), i.e., find a representation in terms of the
monopole currents of the dual Ginzburg–Landau model.
There, (2) is replaced by [8]:

εµνλ∂ν∂λθ̄ (x ) = 2πδµ (x ) . (13)

Here on the R.H.S. stands the so-called vortex density
with

δµ (x ) ≡
∫
L

dyµ(τ)δ (x − y(τ)) (14)

being the transverse δ function defined w.r.t. the electric
vortex line L, parametrized by the vector y(τ). This line
is closed in the case under study, i.e., in the absence of
external quarks, which means that ∂µδµ = 0. Performing
again (by virtue of (13)) the path-integral duality trans-
formation of the partition function (1) with the 3D action,
we get the following representation:

Z3D DAHM =
∫

DϕDyµ(τ)Dhµ

× exp

{
−
∫

d3x

[
1

4η2 (∂µhν − ∂νhµ)2

−2πihµδµ +
(
g
√

2hµ + ∂µϕ
)2
]}

. (15)

Notice that the Kalb–Ramond field has now reduced to
a massive one-form field hµ with the mass m = 2gη, and
the Aµ field has reduced to a scalar ϕ. As in the 4D case,
the field Eµ ≡ g

√
2hµ +∂µϕ can be regarded as a full elec-

tric field, defined via the full dual electromagnetic field-
strength tensor as Eµ = (1/2)εµνλFνλ. The absence of ex-
ternal quarks is now expressed by the equation ∂µEµ = 0,
following from the equation of motion for the field ϕ. Cor-
respondingly, the monopole currents are defined as jν =
∂µFµν = g

√
2εµνλ∂µhλ and are manifestly conserved. No-

tice also that the condition of closeness of the vortex lines,
∂µδµ = 0, unambiguously exhibits itself as a condition of
absence of external quarks, ∂µEµ = 0, by virtue of the
equation of motion for the field hµ, which can be written in
the form Eµ = (1/g

√
2)
[
(1/2η2)∂ν (∂νhµ − ∂µhν) + iπδµ

]
.

Next, after performing the monopole gauge transfor-
mation hµ → hµ + ∂µγ with the gauge function γ =
−(1/g

√
2)ϕ, the field ϕ drops out. Expressing hµ via jµ,

hµ (x ) = − 1
4
√

2πg
εµνλ

∂

∂xν

∫
d3y

jλ (y )
|x − y |

and substituting this expression into the R.H.S. of (15), we
finally arrive at the desired representation for the partition
function of 3D DAHM in terms of the monopole currents:

Z3D DAHM =
∫

Dyµ(τ)Dhµ

× exp

{
−
[

1
4π

∫
d3xd3yjµ (x )

1
|x − y |jµ (y )
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+
1

m2

∫
d3xj2

µ +
√

2πi
g

Sint.(L, jµ)

]}
. (16)

The interaction term of the electric vortex line with the
monopole current now takes the form

Sint.(L, jµ) =
1
4π

εµνλ

∫
d3xd3yjµ (x )

(y − x )ν

|y − x |3 δλ (y ) .

This interaction term can be again rewritten as Sint. =∫
d3xjµHvor.

µ , where the magnetic induction, generated by
the electric vortex line, obeys the equation εµνλ∂νHvor.

λ =
δµ. In the particular case, when one introduces an exter-
nal current of the form (8), there emerges a term Sint. =
gL̂(L, Γ ) with L̂(L, Γ ) standing for the Gauss linking
number of the contours L and Γ . The functional inte-
gral over the field hµ in (16) should again be evaluated at
the saddle point hs.p.

µ , which is determined by the classical
equation of motion, following from (15) after the field ϕ
has been gauged away. This saddle point has the form

hs.p.
µ (x ) =

iη2

2

∮
L

dyµ(τ)
e−m|x−y(τ)|

|x − y(τ)| ,

which yields the following expression for the monopole
current:

jµ (x ) =
igη2
√

2
εµνλ

∮
L

dyλ(τ)
(x − y(τ))ν

(x − y(τ))2

×
(

m +
1

|x − y(τ)|
)

e−m|x−y(τ)|.

In the next section, we shall investigate the relation
between the 3D AHM with external monopoles and the
3D compact QED, as well as the string representation of
the 3D compact QED itself.

3 Vacuum correlators and string
representation of 3D compact QED

In this section, we shall revisit 3D compact QED and find
its string representation in the form of an integral over the
monopole densities. In addition, we shall investigate vac-
uum correlators in the weak-field limit, and demonstrate
the relation of this theory to 3D AHM with monopoles.

The most important feature of 3D compact QED,
which distinguishes it from the noncompact case, is the
existence of magnetic monopoles. Their general configu-
ration is the Coulomb gas with the action [18]

Smon. = g2
∑
a<b

qaqb

(
∆−1) (za, zb) + S0

∑
a

q2
a, (17)

where ∆ is the 3D Laplace operator, and S0 is the action
of a single monopole, S0 = const./e2. Here, similarly to
[18], we have adopted standard Dirac notations, where

eg = 2πn, restricting ourselves to the monopoles of the
minimal charge, i.e., setting n = 1. Then the partition
function of the grand canonical ensemble of monopoles
associated with the action (17) reads

Zmon. =
+∞∑
N=0

∑
qa=±1

ζN

N !

N∏
i=0

∫
d3zi (18)

× exp
[
− π

2e2

∫
d3xd3yρgas (x )

1
|x − y |ρgas (y )

]
,

where ρgas (x ) =
∑
a

qaδ (x − za) is the monopole den-

sity, corresponding to the gas configuration. Here, a sin-
gle monopole weight ζ ∝ exp (−S0) has the dimension of
(mass)3; this is usually referred to as fugacity. Notice also
that, as usual, we have restricted ourselves to the values
qa = ±1, since at large values of the magnetic coupling
constant g, monopoles with |q| > 1 turn out to be un-
stable, and tend to dissociate into the monopoles with
|q| = 1. Later in this section, it will be demonstrated that
the limit of a small gauge-boson mass (which takes place,
e.g., at large g) is just the case when 3D compact QED
follows from 3D AHM with external monopoles.

Next, Coulomb interaction can be made local, albeit
nonlinear, by introduction of an auxiliary scalar field [18]:

Zmon. =
∫

Dχ exp
{

−
∫

d3x

[
1
2

(∂µχ)2 − 2ζ cos(gχ)
]}

.

(19)
The magnetic mass m = g

√
2ζ of the field χ, following

from the quadratic term in the expansion of the cosine on
the R.H.S. of (19), is due to the Debye screening in the
monopole plasma. The next, quartic, term of the expan-
sion determines the coupling constant of the diagrammatic
expansion for the monopole gas, which is therefore expo-
nentially small and proportional to g4 exp

(−const.g2
)
.

Let us now cast the partition function (19) into the
form of an integral over the monopole densities. This can
be done by introducing into (18) a unity of the form∫

Dρδ (ρ (x ) − ρgas (x ))

=
∫

DρDχ exp

{
ig

[∑
a

qaχ (za) −
∫

d3xχρ

]}
,

where we have omitted the inessential normalization fac-
tor. Next, performing the summations in (18), we get

Zmon. =
∫

DρDχ exp
{
− π

2e2

∫
d3xd3yρ (x )

1
|x − y |ρ (y)

+
∫

d3x
[
2ζ cos(gχ) − igχρ

]}
. (20)

Finally, integrating over the field χ by resolving the cor-
responding saddle-point equation,

sin(gχ) = − iρ
2ζ

, (21)
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we arrive at the desired representation for the partition
function

Zmon. =
∫

Dρ exp
{

−
[

π

2e2

∫
d3xd3yρ (x )

× 1
|x − y |ρ (y ) + V [ρ]

]}
, (22)

where

V [ρ] =
∫

d3x


ρ ln


 ρ

2ζ
+

√
1 +

(
ρ

2ζ

)2



−2ζ

√
1 +

(
ρ

2ζ

)2

 (23)

is the parabolic-type effective monopole potential, whose
asymptotic behaviours at ρ � ζ and ρ � ζ read

V [ρ] −→
∫

d3x

(
−2ζ +

ρ2

4ζ

)
(24)

and

V [ρ] −→
∫

d3x

[
ρ

(
ln

ρ

ζ
− 1
)]

,

respectively. Notice that during the integration over the
field χ in (20), we have chosen only the real branch of the
solution to the saddle-point equation (21) and disregarded
the complex ones.

The obtained representation for the partition func-
tion in terms of the monopole densities can be immedi-
ately applied to the calculation of the coefficient function
Dmon.

(
x2
)
, related to the bilocal correlator of the field-

strength tensors as follows [16,17]

〈Fλν (x )Fµρ(0)〉Aµ,ρ =

(
δλµδνρ − δλρδνµ

)
Dmon.

(
x2)

+
1
2

[
∂λ

(
xµδνρ−xρδνµ

)
+∂ν

(
xρδλµ−xµδλρ

)]
Dfull

1
(
x2),
(25)

where the average over the monopole densities is defined
by the partition function (22), whereas the Aµ-average is
defined as

〈...〉Aµ
≡
∫

DAµ (...) exp
(− 1

4e2

∫
d3xF 2

µν

)
∫

DAµ exp
(− 1

4e2

∫
d3xF 2

µν

) .

In (25), Fµν = Fµν + FM
µν stands for the full electro-

magnetic field-strength tensor, which includes also the
monopole part

FM
µν (x ) = −1

2
εµνλ

∂

∂xλ

∫
d3y

ρ (y )
|x − y | .

This monopole part yields the R.H.S. of the Bianchi iden-
tities modified by the monopoles,

∂µHµ = 2πρ, (26)

where Hµ = (1/2)εµνλFνλ stands for the full magnetic
induction. Equations (25) and (26) then lead to the fol-
lowing equation for the function Dmon.:

∆Dmon.
(
x2) = −4π2 〈ρ (x ) ρ(0)〉ρ , (27)

which in fact is a 3D analog of the 4D equation [17](
∂µ∂ν − ∂2δµν

)Dmon.
(
x2) = 〈jµ(x)jν(0)〉 .

The correlator standing on the R.H.S. of (27) can be found
in the limit of small monopole densities, ρ � ζ. By making
use of (22) and (24), we obtain

〈ρ (x ) ρ(0)〉ρ = − ζ

2π
∆

e−m|x |

|x | .

Then, demanding that Dmon.
(
x2 → ∞) → 0, we get by

the maximum principle for the harmonic functions the de-
sired expression for the function Dmon. in the low-density
limit:

Dmon.
(
x2) = 2πζ

e−m|x |

|x | . (28)

We see that in the model under study, the correlation
length of the vacuum [16,17] Tg, i.e., the distance at which
the function Dmon. decreases, corresponds to the inverse
mass of the field χ, m−1 (cf. the case of Abelian-projected
theories, studied in [12,13]). The coefficient function
Dfull

1
(
x2
)

will be derived later on.
Let us now proceed to the problem of string represen-

tation of the 3D compact QED. To this end, let us consider
an expression for the Wilson loop and try to represent it
as an integral over the world-sheets Σ, bounded by the
contour C. By virtue of the Stokes theorem, the Wilson
loop can be rewritten in the form

〈W (C)〉 =

〈
exp


 i

2

∫
Σ

dσµνFµν


〉

Aµ,ρ

=

〈
exp


i
∫
Σ

dσµHµ


〉

Aµ,ρ

(29)

= 〈W (C)〉Aµ

〈
exp

(
i
2

∫
d3xρ (x ) η (x )

)〉
ρ

,

where the free-photon contribution reads

〈W (C)〉Aµ
=

〈
exp


i
∮
C

Aµdxµ


〉

Aµ

= exp


− e2

8π

∮
C

dxµ

∮
C

dyµ
1

|x − y |


. (30)

In (29), dσµ ≡ (1/2)εµνλdσνλ, and η (x ) = (∂/∂xµ)
× ∫

Σ

dσµ (y ) (1/ |x − y |) stands for the solid angle under
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which the surface Σ is seen by an observer at the point x.
Notice that due to the Gauss law, in the case when Σ is
a closed surface surrounding the point x, η (x ) is equal to
4π, which is the standard result for the total solid angle
in 3D.

Equation (29) seems to contain a discrepancy: its left-
hand side (L.H.S.) depends only on the contour C, whereas
the R.H.S. depends on an arbitrary surface Σ, bounded by
C. However, this actually turns out not to be a discrep-
ancy, but a key point in the construction of the desired
string representation. The resolution of the apparent para-
dox lies in the observation that during the derivation of
the effective monopole potential (23), we have accounted
only for the one, namely real, branch of the solution to the
saddle-point equation (21). Actually, however, one should
sum up over all the (complex-valued) branches of the in-
tegrand of the effective potential (23) at every space point
x. This requires to replace V [ρ] by

Vtotal[ρ] =
+∞∑

n=−∞

∫
d3x


ρ

(
ln


 ρ

2ζ
+

√
1 +

(
ρ

2ζ

)2



+2πin

)
− 2ζ

√
1 +

(
ρ

2ζ

)2

 .

A summation over the branches of the multivalued poten-
tial in the expression for the Wilson loop,

〈W (C)〉 = 〈W (C)〉Aµ

∫
Dρ exp

{
−
[

π

2e2

∫
d3xd3yρ (x )

× 1
|x − y |ρ (y ) + Vtotal[ρ]

− i
2

∫
d3xρ (x ) η (x )

]}
, (31)

thus restores the independence of the choice of the world-
sheet. (Notice that from now on we omit an inessential
normalization factor, implying everywhere the normaliza-
tion 〈W (0)〉 = 1.)

It is worth noting that the obtained string representa-
tion (31) has been derived, for the first time, in another,
more indirect, way [20]. It is therefore instructive to estab-
lish a correspondence between the above derivation and
the one in that paper.

The main idea of [20] is to calculate the Wilson loop
starting with the direct definition of this average in a sense
of the partition function (18) of the monopole gas. The
corresponding expression has the form

〈W (C)〉mon. =
+∞∑
N=0

∑
qa=±1

ζN

N !

N∏
i=0

∫
d3zi

× exp
[
− π

2e2

∫
d3xd3yρgas (x )

1
|x − y |ρgas (y )

+
i
2

∫
d3xρgas (x ) η (x )

]

=
∫

Dχ exp
{

−
∫

d3x

[
1
2

(∂µχ)2 − 2ζ cos
(
gχ +

η

2

)]}

=
∫

Dϕ exp

{
−
∫

d3x

[
e2

8π2

(
∂µϕ − 1

2
∂µη

)2

− 2ζ cos ϕ

]}
, (32)

where ϕ ≡ gχ + η
2 .

Next, one can prove the equality

exp


− e2

8π

∮
C

dxµ

∮
C

dyµ
1

|x − y |

− e2

8π2

∫
d3x

(
∂µϕ − 1

2
∂µη

)2
]

=
∫

Dhµν exp
[
−
∫

d3x (iϕεµνλ∂µhνλ

+g2h2
µν − 2πihµνΣµν

)]
, (33)

which makes it possible to represent the contribution of
the kinetic term on the R.H.S. of (32) and the free- photon
contribution (30) to the Wilson loop as an integral over the
Kalb–Ramond field. The only nontrivial point necessary
to prove this equality is an expression for the derivative
of the solid angle:

∂λη (x ) =
∫
Σ

(
dσµ (y )

∂

∂yλ
− dσλ (y )

∂

∂yµ

)
∂

∂yµ

1
|x − y |

+
∫
Σ

dσλ (y )∆
1

|x − y | . (34)

Applying to the first integral on the R.H.S. of (34) the
Stokes theorem in the operator form,

dσµ
∂

∂yλ
− dσλ

∂

∂yµ
−→ εµλνdyν ,

one finally obtains

∂λη (x ) = ελµν
∂

∂xµ

∮
C

dyν
1

|x − y |

−4π

∫
Σ

dσλ (y ) δ (x − y ) .

Making use of this result and carrying out the Gaussian
integral over the field hµν , one can demonstrate that both
sides of (33) are equal to

exp


−e2

2


 1

4π2

∫
d3x (∂µϕ)2 +

1
π

∫
Σ

dσµ∂µϕ

+
∫
Σ

dσµ (x )
∫
Σ

dσµ (y ) δ (x − y )
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thus proving the validity of this equation.
Substituting now (33) into (32), it is easy to carry out

the integral over the field ϕ, which has no more kinetic
term, in the saddle point approximation. This equation
has the same form as (21), with the replacement ρ →
εµνλ∂µhνλ. The resulting expression for the full Wilson
loop then takes the form

〈W (C)〉 = 〈W (C)〉Aµ
〈W (C)〉mon.

=
∫

Dhµν exp


−

∫
d3x

(
g2h2

µν (35)

+Vtotal [εµνλ∂µhνλ]) + 2πi
∫
Σ

dσµνhµν


,

where the world-sheet independence of the R.H.S. is again
provided by the summation over the branches of the mul-
tivalued action, which is now the action of the Kalb–
Ramond field.

Comparing now (31) and (35), we see that the Kalb–
Ramond field is indeed related to the monopole density via
the equation εµνλ∂µhνλ = ρ. Thus, a conclusion following
from the representation of the full Wilson loop in terms of
the integral over the Kalb–Ramond field is that this field
is simply related to the sum of the photon and monopole
field-strength tensors as hµν = (1/4π)Fµν . In the formal
language, such a decomposition of the Kalb–Ramond field
is just the essence of the Hodge decomposition theorem.

Let us now consider the weak-field limit of (35) and
again restrict ourselves to the real branch of the effective
potential, i.e., replace Vtotal [εµνλ∂µhνλ] by V [εµνλ∂µhνλ].
This yields the following expression for the Wilson loop:

〈W (C)〉weak−field =
∫

Dhµν exp
{

−
∫

d3x

[
1
6ζ

H2
µνλ

+ g2h2
µν − 2πihµνΣµν

]}
. (36)

Notice that the mass of the Kalb–Ramond field resulting
from this equation is equal to the mass m of the field χ
from (19).

One can now see that (36) is quite similar to the 3D
version of (3) (with the Aµ field gauged away) that we
had in the DAHM case. However, the important differ-
ence from the DAHM is that by restricting ourselves to
the real branch of the potential, we have violated the sur-
face independence of the R.H.S. of (36). This problem is
similar to the one which appears in SVM [16,17], where
in the expression for the Wilson loop, written via the non-
Abelian Stokes theorem and cumulant expansion, one dis-
regards all the cumulants higher than the bilocal one (the
so-called bilocal approximation). There, the surface inde-
pendence is restored by replacing Σ by the surface of the
minimal area, Σmin. = Σmin. [C], bounded by the contour
C. Let us follow this recipe, after which the quantity

Sstr. = − ln 〈W (C)〉weak−field

∣∣
Σ→Σmin.

(37)

can be considered as a weak-field string- effective action
of the 3D compact QED.

The integration over the Kalb–Ramond field in (36) is
now almost the same as the one of [12] and yields

〈W (C)〉weak−field

∣∣
Σ→Σmin.

= exp


−1

8

∫
Σmin.

dσλν (x )

×
∫

Σmin.

dσµρ (y ) 〈Fλν (x )Fµρ (y )〉Aµ,ρ


 ,

which is consistent with the result following directly from
the cumulant expansion of (29). Here, the bilocal corre-
lator is defined by (25) with the function Dmon. given by
(28) and Dfull

1 = Dphot.
1 + Dmon.

1 , where the photon and
monopole contributions read

Dphot.
1

(
x2) =

e2

2π |x |3

and

Dmon.
1

(
x2) =

e2

4πx2

(
m +

1
|x |
)

e−m|x |, (38)

respectively. Since the approximation ρ � ζ, from which
(28) has been derived, is just the weak-field limit in which
(36) follows from (35), the coincidence of the function
Dmon. (following from the propagator of the Kalb–Ramond
field) with the one of (28) confirms the consistency of our
calculations.

Notice that by performing an expansion of the nonlo-
cal string- effective action (37) in powers of the derivatives
w.r.t. the world-sheet coordinates ξ, one gets the string
tension of the Nambu–Goto term and the inverse bare
coupling constant of the rigidity term, which are repre-
sented by

σ = π2
√

2ζ

g
and

1
α0

= − π2

8
√

2ζg3
, (39)

respectively. Similarly to the corresponding quantities in
the Abelian-projected SU(2) and SU(3) gluodynamics,
found in [12] and [13], both are nonanalytic in g, which
manifests the nonperturbative nature of string representa-
tion of all the three theories. Notice also that the negative
sign of α0 is important for the stability of the string world-
sheets [21].

We see that the long- and short-distance asymptotic
behaviours of the functions (28) and (38) have the same
properties as the ones of the corresponding functions in
QCD within SVM [22]. Namely, at large distances, both
of the functions (28) and (38) decrease exponentially with
the correlation length m−1, and at such distances,
Dmon.

1 � Dmon., due to the pre-exponential factor. In the
same time, in the opposite case |x | � m−1, the func-
tion Dmon.

1 is much larger than the function Dmon., which
also parallels the SVM results. Notice, however, that the
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short-distance similarity takes place only to the lowest or-
der of perturbation theory in QCD, where its specific non-
Abelian properties are not important.

It is also worth noting that the above described asymp-
totic behaviours of the functions Dmon. and Dmon.

1 match
those of the corresponding functions, which parametrize
the bilocal correlator of the dual field-strength tensors in
the DAHM [12]. This similarity, as well as the similarity
of (3) and (36), tells us that there should exist some re-
lation between 3D compact QED and 3D AHM. In what
follows, we shall demonstrate that such a relation really
exists, namely that the 3D compact QED corresponds to
the case of the small gauge-boson mass in the London limit
of the 3D AHM with monopoles. Let us stress that in 3D,
monopoles are considered as particles at rest, contrary to
the 4D case, where they are generally treated as world-
lines of moving particles. That is why, in order to end up
with the 3D compact QED (i.e., the partition function (18)
of the monopole gas), one should start with the 3D AHM,
with the scalar density ρgas of external monopoles at rest,
rather than with the DAHM. The corresponding partition
function has the form

Z3D AHM =
∫

DAµDθ̄Dθ exp
{

−
∫

d3x

[
1

4e2 F2
µν

+
η2

2
(
∂µ

(
θ + θ̄

)− Aµ

)2]}
. (40)

Here, the full field-strength tensor again reads Fµν =
Fµν + FM

µν , where the monopole part obeys the equa-
tion (26) with the replacement ρ → ρgas. Making use of
the relation (13) (where L are now open lines of mag-
netic vortices, ending at monopoles and antimonopoles),
one can perform the path-integral duality transformation
of the partition function (40), which yields

Z3D AHM =
∫

DϕDyµ(τ)Dhµ

× exp

{
−
∫

d3x

[
1

4η2 (∂µhν − ∂νhµ)2 − 2πihµδµ

+
(

e√
2
hµ + ∂µϕ

)2

+
i

e
√

2

(
e√
2
hµ + ∂µϕ

)

× ∂

∂xµ

∫
d3y

ρgas (y )
|x − y |

]}

(cf. (15)). Performing now the gauge transformation,
which eliminates the field ϕ, and integrating over the field
hµ, we obtain

Z3D AHM =
∫

Dyµ(τ) exp

{
−πη2

8

∫
d3xd3y

e−mA|x−y |

|x − y |

×
[
4π

(
1

m2
A

ρgas (x ) ρgas (y ) + δµ (x ) δµ (y )
)

+
∫

d3z
ρgas (x ) ρgas (z )

|y − z |

]}
,

where mA = eη stands for the gauge-boson mass. The
integral

∫
d3y

e−mA|x−y |

|x − y | |y − z | =
∫

d3u
e−mA|u |

|u | |x − z − u |
can easily be calculated by expanding 1/ |x − z − u | in
Legendre polynomials, and the result reads

4π

m2
A |x − z |

(
1 − e−mA|x−z |

)
.

Taking this into account, we can write down the final ex-
pression for the partition function of the 3D AHM with
external monopoles, which has the following simple form:

Z3D AHM =
∫

Dyµ(τ)

× exp

{
−πη2

2

∫
d3xd3y

[
e−mA|x−y |

|x − y | δµ (x ) δµ (y )

+
1

m2
A

ρgas (x ) ρgas (y )
|x − y |

]}
. (41)

The first term in square brackets on the R.H.S. of (41)
represents again the Biot–Savart interaction between the
points of the magnetic vortex (and also interaction be-
tween vortices, if we include several ones), which are of
Yukawa type, i.e., their Coulomb interactions are screened
by the condensate of electric Cooper pairs. On the con-
trary, the interaction between external monopoles, repre-
sented by the last term on the R.H.S. of (41) remains to
be unscreened.

We now see, that when the gauge-boson mass becomes
small (when, for example, the magnetic coupling constant
g = 2π/e becomes large), the Biot–Savart term can be
disregarded w.r.t. the interaction of external monopoles.
In this limit,

Z3D AHM −→ exp
[
− π

2e2

∫
d3xd3y

ρgas (x ) ρgas (y )
|x − y |

]
,

which is just the statistical weight of the partition function
of the monopole gas (18). Clearly, this result is in agree-
ment with that of the corresponding limiting procedure
applied directly to (40).

4 Summary

In the present paper, we have addressed two problems.
The first of them is the investigation of the relation be-
tween confinement in the Abelian-projected SU(2) and
SU(3) gluodynamics and the interactions between mag-
netic monopole currents and electric strings. To study
this problem, we cast the partition function of the 4D
Abelian-projected SU(2) gluodynamics, which is argued
to be just the dual Abelian Higgs model, into the form
of the integral over the monopole currents. Besides the



358 D. Antonov, D. Ebert: Confining properties of Abelian-projected theories

quadratic part in these currents, the resulting monopole
effective action turned out to contain also a term which
described the interaction of a monopole current with the
electric ANO string. Then we extended our analysis to
the case of the Abelian-projected 4D SU(3) gluodynamics,
where the resulting representation turned out to contain
three monopole currents linked to two independent string
world-sheets in a certain way. Finally, for illustration, we
also performed the corresponding calculation in 3D, where
the role of the moving string world-sheets is played by the
static electric vortex lines, and the found expressions are
more transparent.

The second topic studied in this paper, is the investiga-
tion of the 3D compact QED and its relation to the SVM
and the 3D Abelian Higgs model with external monopoles.
Firstly, we have demonstrated that the string representa-
tion of 3D compact QED (the so-called confining string
theory) is nothing else than the integral over the
monopole densities. Secondly, in the weak-field limit of
3D compact QED, we have calculated two coefficient func-
tions, which parametrize the bilocal correlator of the field-
strength tensors in the analogous case of SVM. One of
them was found by two methods: (i) from the correlator
of the monopole densities; and (ii) by virtue of the weak-
field limit of the confining string theory. Coincidence of
both results thus confirms the consistency of our calcula-
tions. By making use of this function, we then obtained
the string tension of the Nambu–Goto term and the in-
verse bare coupling constant of the rigidity term, corre-
sponding to the weak-field effective action of the confin-
ing string theory. Those turned out to be nonanalytic in
the magnetic coupling constant (i.e., explicitly nonpertur-
bative) and positive and negative, respectively, which is
important for the stability of the obtained string effective
action. The large-distance asymptotic behaviours of both
coefficient functions correspond to the ones parametrizing
the bilocal correlator of the field-strength tensors in QCD
within the SVM. The obtained asymptotic behaviours are
also similar to those of the corresponding functions in the
DAHM. Finally, we proved that the latter similarity is not
accidental, namely, the 3D compact QED is related to the
small gauge-boson mass limit of 3D AHM with external
monopoles.

In conclusion, the obtained results shed some light
on the mechanisms of confinement in various Abelian-
projected theories. Furthermore, they prove the relevance
of concepts of the SVM to the description of confinement
in the 3D compact QED.
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Appendix A. Path-integral duality
transformation

In this appendix, we shall outline some details of a deriva-
tion of (3). Firstly, let us linearize the term
η2/2

(
∂µ

(
θ + θ̄

)− 2gBµ

)2 in the exponent on the R.H.S.
of (1) and carry out the integral over θ as follows [5,7,8,
12]: ∫

Dθ exp
{

−η2

2

∫
d4x

(
∂µ

(
θ + θ̄

)− 2gBµ

)2}

=
∫

DCµDθ exp
{∫

d4x

[
− 1

2η2 C2
µ

+ iCµ

(
∂µ

(
θ + θ̄

)− 2gBµ

)]}

=
∫

DCµδ (∂µCµ) exp
{∫

d4x

[
− 1

2η2 C2
µ

+ iCµ

(
∂µθ̄ − 2gBµ

)]}
. (A.1)

Next, we can solve the constraint ∂µCµ = 0 by represent-
ing Cµ in the form Cµ = ∂ν h̃µν ≡ (1/2)εµνλρ∂νhλρ, where
hλρ stands for an antisymmetric tensor field.

Note that the field Cµ is related to the monopole cur-
rent (4) as Cµ = −(1/g)jµ. This means that the δ function
in the last equality on the R.H.S. of (A.1) just expresses
the conservation of this current.

Next, taking into account the relation (2) between θ̄
and Σµν , we get∫

Dθ̄Dθ exp
{

−η2

2

∫
d4x

(
∂µ

(
θ + θ̄

)− 2gBµ

)2}

=
∫

Dxµ(ξ)Dhµν exp
{∫

d4x

[
− 1

12η2 H2
µνλ

+ iπhµνΣµν − igεµνλρBµ∂νhλρ

]}
. (A.2)

In the derivation of (A.2), we have replaced Dθ̄ by Dxµ(ξ),
discarding for simplicity the Jacobian [9] arising during
such a change of the integration variable.

Bringing together (1) and (A.2), we obtain

Z4D DAHM =
∫

DBµDxµ(ξ)Dhµν

× exp

{
−
∫

d4x

[
1

12η2 H2
µνλ +

1
4
F 2

µν

− iπhµνΣµν + igF̃µνhµν

]}
. (A.3)

Let us now integrate over the field Bµ. To this end, we
find it convenient to rewrite

exp
(

−1
4

∫
d4xF 2

µν

)

=
∫

DGµν exp
{∫

d4x
[
−G2

µν + iF̃µνGµν

]}
,
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after which the Bµ integration yields∫
DBµ exp

{
−
∫

d4x

[
1
4
F 2

µν + igF̃µνhµν

]}

=
∫

DGµν exp
(

−
∫

d4xG2
µν

)
δ (εµνλρ∂µ (Gλρ − ghλρ))

=
∫

DAµ exp
[
−
∫

d4x (ghµν + ∂µAν − ∂νAµ)2
]

. (A.4)

Here, Aµ is just the usual gauge field, dual to the dual
vector potential Bµ. Finally, by substituting (A.4) into
(A.3), we arrive at (3) of the main text.
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